IIT Mandi

Course Name	: Introduction to Quantum Communication
Course Number	: QT 406
Credits	: 3-0-0-3
Prerequisites	: Engineering Mathematics (Linear Algebra, Complex algebra, basics of 2 nd of ODEs and initial value problems, 2 nd order PDEs and boundary value problems, Probability and Statistics, Random variables). Maxwell's equations and EM theory at the level of the core physics syllabus from AICTE model
Curriculum Intended for	: UG/PG/PhD
Distribution	: Elective PG/Elective UG
Semester	: Odd/Even

Preamble: Students of this course learn (i) The basics of EM theory, (ii) The basics of photodetection, (iii) The basics of information theory, (iv) The central ideas in quantum communications

Course Content and syllabus:

- Basics of Polarization optics
 - Quarter and half-wave plates
 - Polarizing beam splitters
- Basics of linear and square-law detectors
 - Quadrature amplitude modulation
 - Heterodyne and Homodyne demodulation and linear detectors
 - o Intensity measurements and square law detectors
 - Photomultipliers, Avalanche Photo diodes
- Digital communication information theory (basics)
 - Information entropy
 - Noiseless channel encoding
 - Noisy channel encoding
- No cloning theorem
- Quantum Memories
- Quantum repeaters
- Entanglement and Bell Theorems
- Bell Measurements and Tests
- Quantum Teleportation protocol
- Quantum Dense coding
- Quantum Key Distribution protocols
 - o BB84
 - **E91**
 - BBM92.
 - **B92**
 - COW
 - DPS
- Quantum Networks and Quantum Internet
- Survey of Hardware implementations

- Free space communications
- Satellite based communications
- Fibre optics-based communications

Course References:

- 1. Quantum computation and quantum information Nielsen and Chuang Cambridge University Press, Cambridge (2010)
- 2. A Pathak, Elements of Quantum Computation and Quantum Communication, Boca Raton, CRC Press (2015)